Numerical simulation of
tsunami and Its application
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Goals

e To understand the basic tsunami physics, modeling and
its limitations

« To simulate a tsunami by yourself and check the
validation of its results through simulation exercises
using a tsunami code (Tohoku University’s Numerical
Analysis Model for Investigation).
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Introduction

Tsunami simulation is widely used for hazard assessments.

e Tsunami prediction

e Tsunami countermeasure
e \WWarning systems
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Modeling of the 2004 tsunami

Namkem, Thailand




Modeling of the 2004 tsunami

Tsunami current directions and velocity.

Namkem, Thailand
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We can quantitatively estimate the impact of a tsunami flow from a numerical modeling

In today’s lecture, | am going to explain tsunami modeling from fundamental basis to its application.



Advanced development model

Ide-induced tsunam

Landsl

100




Example of landslide-induced
sExEEexs  tsunaml

= 1792 Unzen erupted

= Mayuyama was collapsed with the large
earthquake and then, the landslide flowed into

Ariake-sea accompanying a large tsunami

= The landslide and tsunami killed 15,000 people
In Shimabara and Higo

JMA website
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Shimabara(Nagasaki)
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| (C) Google eart

Mayuyama

L

Google earth

Kyushu Universit s ufri
http://museum.sci.kyushu-u.ac.jp/Museum/Museum-

e/Part2-e/taihen-e/taihen-e.htm




Outline of tsunami modeling

1. Derivation of governing

equations
Differential equation continuous function
o M

< o ox
oM on
+gh—=0
ot : OX <
2. Discretization of governing The differential equations could
equations not be computed directly.

Finite difference method discretized value

k+1

mooon Mis2 =M —0 I ® S
At AX
M K2 _ g kL2

i1 — 1
+gh = -0
At I AX 2 AX

A 4

3. Programming using fortran




Outline of tsunami modeling

1. Derivation of governing

equations
Differential equation continuous function
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1. Differential equation
(Long-wave approximation)

B Long-wave approximation
1.Long wave (wave height << wave length)
2.Vertical acceleration of water particle = 0O

3.The water pressure Is gravitational pressure

(Movement of water particle)

Several meters Long-wave
v T v g Short wave

— "

Several kilometers long and thin ellipsoid



(Long-wave approximation)

B Long-
1.Long w
2. Vertical
3.The waj

1. Differential equation

Long wave Short wave

_ Vertical velocity = max
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Vertical velocity =0~
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(Movement of water particle)

Several meters
ve'e v Long-wave Short wave

>

Several kilometers long and thin ellipsoid
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1. Differential equation
(Long-wave approximation)

B Long-wave approximation
1.Long wave (wave height << wave length)
2.Vertical acceleration of water particle = 0O

3.The water pressure Is gravitational pressure

(Movement of water particle)

Several meters Long-wave
v T v g Short wave

— "

Several kilometers long and thin ellipsoid



1. Differential equation
(Long-wave approximation)

Movement of water particle Vertical distribution of wave

pressure

Horizontal velocit
v Y

)

Horizontal velocity is vertically constant

HWHWM




1. Differential equation
(Long-wave approximation)

B Long-wave approximation

1.Long wave (wave height << wave length)

2.Vertical acceleration of water particle = 0O

3.The water pressure Is gravitational pressure

(Movement of water particle)

Several meters Long-wave
v T v g Short wave

— "

Several kilometers long and thin ellipsoid



Governing equations
(Differential equations)



1. Differential equation
(Governing equations)

e The continuity equation of incompressible fluid

Law of conservation of mass

X

T w

W+%AZ
0z
(U x At) 4
u—» Az .
z I X,

— (Wx At)

—— Amount of

change

u+auA

OX

N
PUAZAL + pWAXAL = plut—

ou

out

AX)AZAT + (W +

Volume of inlet flow
O X {(Az X U x At) + (Wx AX x At)}

Volume from x- Volume from z-
direction direction

Volume of outlet flow

p{(u + a—qu)AzAt + (W+ %Az)AxAt}
4

OX
Volume from Volume from z-
x-direction direction

oW
loz AZM ‘ ax az




1. Differential equation
(Governing eguations)

« The momentum equations of incompressible fluid

Momentum condition: Navier-stokes equation = Newton’s second law

Horizontal direction F = ma
ou  ou oul | 1opl||[o%u
E+U8—+Wa—=——a—+v 5
X Z P X 0z (U :Horizontal velocity
Horizontal acceleration ‘ Viscosity term W :Vertical velocity

of water particle Pressure term P :Water pressure

V' :Viscosity coefficient

A

Vertical direction

oW  Ow OW 1 0p 02w 9 :Gravity acceleration
—+U—+W—=0 +——hV| —5
ot X 0z p 0z oz°

Vertical acceleration Pressure term ‘
of water particle Viscosity term

_|_




1. Differential equation
(Governing equations)

Governing equation

» Direct numerical simulation

{ Continuity equation

Navie-stokes equation (Vof, smac, etc.)

Computationally expensive

—+—=0 . .
oX 0z L--» Long-wave approximation
U au du 1 dp (azu]

FU—+W—=FX-——+Vv| — |
a ox o pox |\ oz (Movement of water particle)

2

SR [, 1D | OW v Long-wave Short wave
ot Ox o/ p 01 oz°

These are fundamental equations for not only l é l é
tsunami but also all incompressible fluid.




The long-wave equation



Flow for long-wave model

Actually long-wave model is derived from solving boundary value problems

Boundary conditions

A

Governing equations

Long-wave o _
approximation Governing Continuity equation
. equation | Navie-stokes equation
(small vertical =
locity) .
ve Bottom boundary condition

@ !

Integration of governing equations v Long-wave Horizontal velocity
In the vertical direction

A\ A 4

And then, | integrate governing equations
in the vertical direction to remove vertical

component from governing equation.



1. Differential equation
(1 Boundary conditions)

« Surface boundary (Z=n)

a) Dynamic boundary condition

Psurface = 0

b) Kinematic boundary condition

|

on

E + usurface 5

on

3

x At =

Rise velocity of
water surface

i

W

surface

x At

Vertical velocity of
water particle at
surface

L

{

n:surface elevation (m)
u :Horizontal velocity (m/s)

w :vertical velocity (m/s)

Continuity equation

v Navie-stokes equation

wi o V¥
@
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. Differential equation

(1 Boundary conditions)

e Bottom boundary (Z= -h)

c) Kinematic boundary condition

oh h:water depth (m)

OX { u :Horizontal velocity (m/s)

w :vertical velocity (m/s)

the ratio between vertical velocity and horizontal velocity at bottom is equal to the
gradient of bottom

ni

1 v

Continuity equation

Navie-stokes equation

The bottom of water must flow along bottom bed.



Flow of long-wave approximation

@

Governing equations | Boundary equations
Long-wave o :
approximation Gover_ning Continuity equation

. equation Navie-stokes equation
(small vertical —=
velocity) Bottom boundary condition
@ A 4
Integration of governing equations v Long-wave Horizontal velocity
In the vertical direction >

| integrate governing equations in the
vertical direction to remove vertical

componet from governing equation.



1. Differential equation
(@ Integration of continuity equation)

Continuity equation

ou OW Surface Jy oW Surface Surface 5W
—t—=0 —FF—” —+—dz —F ~—dz+ j
OX 02 botom OX  OZ bottom  OX bottom 82

Integration in vertical direction

jn a—udz+ %z:
h OX ~h 0z

v 2 WL—%

still-water level=0 |, Continuity equation

Navie-stokes equation




1. Differential equation
(@ Integration of continuity equation)

Continuity equation

ou OW Surface Jy oW Surface Surface 5W
—t—=0 —FF—” —+—dz —F ~—dz+ j
OX 02 botom OX  OZ bottom  OX bottom 82

Integration in vertical direction

r Mz 4 [T My, :jn M iz 4 W], =
h OX -h 0z h OX

v 2 WL—%

still-water level=0 |, Continuity equation

Navie-stokes equation




1. Differential equation
(@ Integration of continuity equation)

Continuity equation

ou ow Surface oy oW Surface g Surface @W
—+—=0 —F —+—0z — —dz+ j
oX 0z bottom OX  OZ bottom  OX bottom 82

Integration in vertical direction
- Vertical velocity at  Vertical velocity at

surface boundary bottom boundary

7 ou OW B U&_u . 7 ou B
J‘h&dz+ hgdz_jhaxdu[w]_h J‘h&dz+wx, t)—w(x,~hit)

v 2 WL—%

still-water level=0 |, Continuity equation

Navie-stokes equation




1. Differential equation
(@ Integration of continuity equation)

Continuity equation

surace g o i aSurface boundary Bottom boundary [ Boundary conditions =
I M M= " Haz+ w(x, 7,t)—w(x,~h,t]  +«— 81 o1
bottom OX  OZ ~h OX W, = —S+US >
- ot OX
::r@—udz# a77S+u D[y AT W, ¢oh
J-hox 1| ot OX OX —
/ u, X
Leibniz integral rule
9 A
jnhg_udz - udz%/ X deto Q(X,Y)dzz
X X
-2 Qi vz +Q(x A0} 2 - @l r(0) 22
Surface
I u +—dz = dz +
bottom OX  OZ GX 6’[




1. Differential equation

(@ Integration of continuity equation)

From long-wave approximation, horizontal velocity is vertically constant.

o (" 0
— | udz =—(uD
ot J-n ot
\ Flux v Long-wave Horizontal velocity
D :Depth from bottom to M=uxD

surface (=n+h)

A A 4

D

Horizontal velocity is vertically constant

Continuity equation in long-wave model

on N oM n:surface elevation

ot OX M :Flux in the x-direction




1. Differential equation
(@ Integration of momentum equation)

Momentum equation in vertical direction

ow  ow_~ ow 1op (0°

In the long wave condition,

—+u + W—=0———+V : )
ot o7 p 01 572 vertical acceleration of
. . . water particle is expected to
Vertical acceleration of Viscosity term be smgll P

water particle

(Movement of water particle)

v Long-wave Short wave

=Y




1. Differential equation
(@ Integration of momentum equation)

Indefinite Integration in vertical direction

1p op
0=g--L L o0-(|g-=Llz _ ., o= _
g (g p@Zj 0 pjgdz J-Edz

0= gz~ (P(X,2)+C) (C s a constant of integration )

From kinematic boundary condition Psurface = 0

p(X,7)=p9n—-C — C=p97

p(X,2) = p9(n —2)

Gravitational pressure

¥

I~

r .,—
S
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1. Differential equation
(@ Integration of momentum equation)

Momentum equation in horizontal direction

2
u ou ou 1op ot p=p9(1-2)
ot ox 0z  poX oz°
I 2
2 ou” owu ou ou ou
8u+8u +8wu —l ou T TUg, Tt sz
ot ox oz OX oz°

Integration in vertical direction

surface oy AU 2 OWu surface on 52U
j + + dz = j —g—+Vv| — |0z
bottom Ot OX OZ bottom OX



1. Differential equation
(@ Integration of momentum equation)

Integration in vertical direction f—-— ntearal rule
(Left side terms) % ﬂ(();)Q(x,y)dz=
] 2 (x)
J‘SW ace ou N ou N owu dz J‘aﬂ(x) aa Q(x, y )iz +Q(x, A(X)) ,3( ) Qlx, (X))ﬁa(x)
bottom | Ot OX 0z
surface ou
—dz—— udz u u
J.bottom ot // Méﬁ/
surface n
I aLdZ—i u“dz—ug ace_n_ulf m Ay o (7 o (7 -
bottom  OX OX 9—h OX OX > — udz +— | u“dz
f ’ 7 ot J- OX J—
surtace
[ 2 g7 — fuws
ottom

= usurface SM_ ubottV/ )




1. Differential equation

(@ Integration of momentum equation)

Integration in vertical direction

(Left side terms)

9 (" udz = 2(uD)

ot J-h ot
9 77u2dz=i( 2D)
ot J-h OX

D :Depth from bottom to surface ( =n+h )

surface gu- AU®  OWU oM o[ M?
j + + dz = +
bottom Ot OX 0z ot ox\ D

Long-wave
v g

Horizontal velocity

»
»

»

Horizontal velocity is vertically constant




1. Differential equation
(@ Integration of momentum equation)

Integration in vertical direction

surface oy Au 2 OWU surface on @Zu
j- + + dz = j —-g—+v| —5|dz
bottom Ot  OX 0z

_a|v|+a M ?
ot ox\ D




1. Differential equation
(@ Integration of momentum equation)

Integration in vertical direction

(Right side terms)

surface 2
j _g@_m( dtuly
bottom OX

v Long-wave Horizontal velocity

)
N
N
\ 2 4

Horizontal velocity is vertically constant

surface
bottom OX OX

f
surface | 02U ou S _ ou surface aubottom _ 1
j V| — dz=|v— =V V= = \Usdface ~ Chottom
bottom OZ 0z

bottom 0z 0z P \
Manning formula

internal shear force of water _ 2

Thottom = & M |M |




1. Differential equation
(@ Integration of momentum equation)

(Left side terms)

surface ou QuU® WU M 0 M?
j + + dz = +
bottom Ot  OX oz ot ox| D

(Right side terms)
eSUrtace g 877 dZ _ _gD 877

Joottom OX OX
-surface (’32 gn 2
bottom a 0z == 113 M|M|
. Z D

Momentum equation in non-linear long-wave model

2 2
M O (M J+gDan+ Jn M|M|=0

ot ox| D

When | summarize all terms, the momentum equation in non-linear long-wave model is derived.



1. Differential equation
(Nonlinear long-wave model)

Continuity equation

877+8M _
ot  OX

0

Momentum equations (Nonlinear long-wave model)

oM

ot

2

2
u g (M J-JrgD(%7
OX

gn
+D7/3 M|M|:O

Advection term
(Nonlinear term)

Friction term

Gravity term

Local change term

"

— Linear long-wave model




1. Differential equation
(Nonlinear long-wave model)

Ratio of each terms to local change term

#Ho a2

Il[:]l:] [

0.80

0.60

0.20

e

- Gravity term

e F

."H_n—'_';

Friction term

0. 0 p+ : ——
y [ mn.,., GO B0 100 120 140 160 18
-zo0 | | R HTER
| &
| e o --- -
-qo0 F <—§—> More than 50 fimdepth
D%=042 KN .
-600 | UT'I1|5 SEC
Norflinear | Linear
Depth -ago L | Imamura et al.,(1986)




The limitation of long-wave model

Long wave approximation "\ Long-wave model cannot
- o represent phenomena in which

1. Long wave (wave height << wave length) | the vertical acceleration is
5 Vertical | : ¢ cle = 0 needed such as wave breaking,
-Vertical acceleration of water particle = water splash etc.

(Horizontal velocity is vertically constant)

3.The water pressure is gravitational pressure>

Horizontal velocity is vertically constant

\ 4

A A 4




Finite difference method



Outline of tsunami modeling

<

Differential equation
on M _,
ot oX
oM
ot OX

+ghan=0

continuous function

-

\ 4

2. Discretization of governing

equations

The differential equations could
not be computed directly.

Finite difference method

k k
n -7 + Miv2 —Miy ~0

At AX

n gh| i1 — 1 -0
At AX

discretized value

A

3. Programming using fortran




Basic concept

1. Differential equation 2. Finite difference equation

tangential line A I tangential line
x+Ax)-f(X) \
o
=< =9 >
Ax
The differential of a function The differential is approximated by
means tangential line. the tangential line from discretized
values

of (x) _ T(x+Ax)— f(x)
ox AX



The finite difference eguation

Forward difference
ot (x) _ fig—f
OX AX

low accuracy, stable (M>0)

Backward difference
o(x) f-f,

N/
N/

OX AX

Low accuracy, stable (M<0)

Centered difference

of (x) - fii2 — Tisgo
OX AX

high accuracy, Including unstable error

Original

tangential line




Practice (1)

Discretize the following equation using (1) backward
and (2) centered difference for spatial grid and
backward difference for time grid

au 6U t: time

—=C— X: distance

8t 6X C:. wave speed

Wave Propagation

=
VA N\

[EnY
= U

o
o

Water level (m)

) Uv 1 1\2.-/ 2 2.5 3 3.5 8 4.5

Distance (m)

U - U O
=)




Practice (1)

Discretize the following equation using backward and
centered difference for spatial grid and backward
difference for time grid

8U @U t: time

—=C— X: distance

6t 8)( C:. wave speed

Backward difference Centered difference
K (K K k—1 K Kk
Ui —Ui, Ui —U, Ui — Ui,

k k-1
Ui —U —C _c

Al AX At AX



Practice (2)

Simulate the equation using Excel in the
following conditions

@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area =0~ 10 (m), Total time =5 (sec)

@ Boundary(sin wave with 1 m amplitude and 1.0
sec period) =>sin(2*3.14/1.0)



Practice (2)

(2) Simulate the equation using Excel using

the following conditions
@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area = 0~ 10 (m), Total time =5 (sec)
® Boundary(sin wave with 1 m amplitude and 1.0 sec period) => sin(2*3.14/1.0)

Step 1 make the following table

o | 1 | 2 ] ..
s 0 0.2 0.4 e D

0 0

1 0.2



Practice (2)

(2) Simulate the equation using Excel using

the following conditions
@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area = 0~ 10 (m), Total time =5 (sec)
® Boundary(sin wave with 1 m amplitude and 1.0 sec period) => sin(2*3.14/1.0)

Step 2 Input the initial conditions at time O

o | 1 | 2 ] ..
s 0 0.2 0.4 ... D

0 0 0

1 0.2 0



Practice (2)

(2) Simulate the equation using Excel using

the following conditions
@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area = 0~ 10 (m), Total time =5 (sec)
® Boundary(sin wave with 1 m amplitude and 1.0 sec period) => sin(2*3.14/1.0)

Step 3 Input the boundary condition

o | 1 | 2 ] ..
: 0 0.2 0.4 ... D

0 0 0 =sin(2*3.14/1.
0*time0)

1 0.2 0



Practice (2)

(2) Simulate the equation using Excel using

the following conditions
@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area = 0~ 10 (m), Total time =5 (sec)
® Boundary(sin wave with 1 m amplitude and 1.0 sec period) => sin(2*3.14/1.0)

Step 4 Input the difference equation

o 1| 2 | ..
0 0.2 0.4 ;e O

0 0 0 =sin(2*3.14/1.0
*timel)

1 0.2 0 ull=u01l1-
c*dt/dx*(u01-

u00)



Practice (2)

(2) Simulate the equation using Excel using

the following conditions
@ dx=0.2 (m) dt=0.2 (sec) c¢=1.0 (m/s)
@ Area = 0~ 10 (m), Total time =5 (sec)
® Boundary(sin wave with 1 m amplitude and 1.0 sec period) => sin(2*3.14/1.0)

Step 4 Input the difference equation

o 1| 2 | ..
0 0.2 0.4 ;e O

0 0 0 =sin(2*3.14/1.0
*timel)
N
1 0.2 0 ull=u01l1-
c*dt/dx*(u01-

u00) B




Staggered grid

(Special grid) (Time grid)
o k+1
g
K+1 O M [k+172
Mi_1/2 ﬂ O ﬂ Mi 12 K+1/2 ﬂ
7 K ®
Uk
i-1/2 i+1/2

Water flux is defined at edge of grid

{ Water elevation is defined at center of qgrid

there is dislocation between n and M_



The finite difference equation
(Llnear term) Center of spatial

(Special grid) gridyl), (2)

Continuity equation
877+8M _
ot ox

0 (1)

k+1 k
— M
# 7 7 +
At

Momentum equation

AX

aﬂ+ gha—77 =0 @
ot OX
M k+1/2 . M k-1/2
q AL + 0D/,

) _|\/|._
i+1/2 i-1/2 -0

i1 — 7]
AX

=0

™

il1/2
O

T

1/2

O
77i+1

(Time grid)

1-1/2

1+1/2
X

Center of time
k41

K+1

grid for (1), (2)

K+1/2
K




The finite difference equation

Continuity equation

di

k+1 k

7

_|_
At

Mi2 —Mig)
=0
AX q

Next time step

Momentum equation

M k+1/2

k—1/2
- M

At

Mg — 1,
+9D;,1/ 1A—X =0 q

Next time step

k+1

At
=

I\/|i+1/2 N I\/Ii—1/2)

Previous time step

M k+1/2

= M % — o] D

At

AX

(10— 1)

Previous time step




The finite difference equation

Continuity equation -

Al
k+1 _ k 2t
n=mn AX(

M i+1/2 M 1-1/2

Momentum equation

)

A\t

X

(77i+1 - ’719—

<«
| k+1 }
i P | ]
1 l 1
___________ Y W U df
A}ku/z Ml_c+M
i-172 i+1/2
] r.._ ]
L l__ } k
] k ]
| ' 1 .
i i+1
1 1 |
. . k172
| E_I\Mz}w
: v
| I



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
, 3 @® Flux
J
T
: : 2
Time grid
1
0
1 2 3 4

Spatial grid — |



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
. 3 @® Flux
J
T
. _ 2
Time grid
1
oo o —o 9
ol A TA AT A - .
: : Initial conditions

Spatial grid — |



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
. 3 @® Flux
J
T
: : 2
Time grid

lﬁ\/W\ Continuity equation

At
A | A | A : A 77k+1:77k_A_(Mi+1/2_Mi—1/2)
0 ! ! ! X

Initial conditions

Spatial grid — i



j
T
Time grid

Practice (2)
« Write the leap-frog method on the flowing grid

Spatial grid — i

/\  Water
elevation
Q@ Flux

Moment equation
At

M2 = M2 - 9D;.1/ A (77i+1 _77i)
o . X
Continuity equation
K K At
n = n _E(Miﬂ/z - Mi—l/Z)

Initial conditions



j
T
Time grid

Practice (2)
« Write the leap-frog method on the flowing grid

Special grid — i

/\  Water
elevation
Q@ Flux

Moment equation
At

M2 = M2 - 0D;.1/ A (77i+1 _77i)
. . X
Continuity equation
K K At
n = n _E(Miﬂ/z - Mi—l/Z)

Initial conditions



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
, 3 @® Flux
J
! 2
Time grid - Moment equation

T MKz Z k2 o] D2 %(Uiu _77i)

Continuity equation

n=n __X(Mi+1/2 - Mi—l/Z)

Initial conditions

Special grid — i



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
, 3 @® Flux
J
! 2
Time grid >-, Moment equation

T MKz Z k2 o] D2 %(Uiu _77i)

Continuity equation

n=n __X(Mi+1/2 - Mi—l/Z)

Initial conditions

Special grid — i



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
. 3 @® Flux
J
1 Boundary conditions
T /
Time grid ) 2 Moment equation
{ At
R 9D,/ _(77i+1 _77i)
1 . : AX
Continuity equation

n=n __X(Mi+1/2 - Mi—l/Z)

Initial conditions

Special grid — i



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
. 3 @® Flux
J
1 Boundary conditions
T /
Time grid o— 0 Moment equation
M K2 — M &2 _ gD At( . )
1 = g 2 5 M — T,
Continuity equation
K K At
n +1=77 _E(Miﬂ/z_Mi—l/Z)

Initial conditions

Spatial grid — i



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
elevation
| 3 /{X\ @ Flux
J , N
] " 1, Boundary conditions
o /
Time grid o— 0 Moment equation
M K2 = M Y2 _ gD ﬂ(n _77_)
1 i+1/2 AX i+1 i

Continuity equation

At
k k
n "= n _E(Miﬂ/z - Mi—l/Z)

Initial conditions

Spatial grid — i



Practice (2)
« Write the leap-frog method on the flowing grid

4 /\  Water
: ) elevation
. 3 @® Flux
J

]

e d Boundary conditions
Time grid /

| \
1

Moment equation
At
R 9D,z A_(Ui+1 _77i)
. : X
Continuity equation

At
k k
n "= n _E(Miﬂlz - Mi—l/Z)

Initial conditions

Spatial grid — i



The finite difference equation
(Nonlinear term)

Nonlinear terms cause unstable effect in some cases.

Thus, more stable scheme is used for nonlinear terms.

Upwind difference scheme Special grid
2
o|M” Mi_i2 Mis2 Miso
ox| D
Backward difference (M > 0) q Q q O
2 i
0| M ~ 1 I\/||+1/2 |\/||1/2 s
oxl D AX\ Diy,  Diys 1-1/2 1+1/2 1+3/2

M 1-1/2 M 1+1/2 M 1+3/2

Forward difference (M < 0)

oM ? ~ 1 I\/||+3/2 I\/||+1/2 O h O h
ox| D AX Ti i+l
1-1/2 i+1/2 1+3/2

I:)|+3/2 Di+1/2



The finite difference equation of
tsunami model

Continuity equation

ki1 kAt
n " =1 _E(Miﬂ/Z—Mi—l/Z)

Momentum equation

i - i — 1 Mi2+ Mi2+ Miz—
Mk 1/2:Mk 1/2—9Di 1 At-(ﬂl 3/2 +12 1/2 _|_/13 1/2

AX i+3/2 i+1/2 Di—l/ 2

Mij220 4 =0, A4 =1 A3=-1
Mi2<0 4 =1 A =-1 A4 =0



Inundation model



lnundation model

Momentum equation

2
Ivli+1/2

2
_|_12 +23 Millzj

1+3/2 Di+1/2 Di -1/2

2
|\/Ii+3/2

M <2 p k2 gD...,, Miva — 71 At —(ﬂj

o

D (total depth) in momentum equation is defined at the edge of grid,

But estimated D(total depth) from continuity equation is center of grid

Di-1 Di | Di+l | [Di-1/2=0.5Di + Di-1) IFDi=0(dry condition)

L] i +
A ® A 0 A Di+1/2=0.5*(Di+1 + Di) How to estimate Di+1/2

= Inundation model

Mi-1/2 Mi+1/2



lnundation model

B There are 6 type of inundation patterns in difference scheme

Pattern (1)

i1 (i)ixl

I I+1

Pattern (4)

i1 (i)

Dry

Pattern (2)

I It1

Pattern (5)

i1 (i )ixl

Pattern (3)

Pattern (6)

i1 (i )it

Dry | Dry




lnundation model

B Algorism of inundation model

Is there water

in left side?
No Yes
Branch 1 v
¥ Is there water in
Is there water in fiaht side?
right side? '9 ae:
No Yes No Yes
Branch 4 Branch 2
y y
Is water level at Right side Is water level at LEFT side
higher than the ground level higher than the ground level
at LEFT side at RIGHT side
No Yes No Yes
Branch 5 Branch 3
\ 4 \ 4 — S — \ 4 —— — — [ — PN, A — -
Pattern 6 Pattern 5 : Pattern 4 : Pattern 3 : Pattern 2 :: Pattern 1 |
No water ! Water can not move '] Depth at 7 | Water can not move ! | Depth at 1 lIDepth at 7 :

Water flux /=0 Water flux =0 | Di= ZI+D+H(®) | Water flux /=0 1 Di=Z({D+HI+1) 1 D=DZD+DZI+1))/2 :

. . . . | . . Il . .
]
]|
]|




Nesting model



Nesting grid system

Layer-1 (4 min Grid size)

Nesting Grid system

Focus\area

\ 1 ax

er-2(2 min Grid size

It is better to use detailed grid
mesh. But it takes time to
compute the detailed grid mesh.

So we use changing grid systems.




Nesting grid system

Focus area

\

N[ 1 IAX / Large region \

Interpolated Average
Water Flux Water level
M : | M,N n
=T
- == 1 J |

ti}l K Small region /

N

Small region receives interpolated water flux M,N from large region.

Large region receives averaged water level n from small region.



Nesting grid system

(1) Large region to Small region

Mi

Mi+1

vl

[Linear interpolation]

Ni

i

n

2

m1= (2% Mi + Mi+1)/3

Ni+

L

nil
n2

m2 = (Mi + 2 X Mi+1)/3

(2) Large region to Small region

ni

[Averaged water level]

/ Algorism \

Continuity equation
of small region
\/
Insert the averaged n from
small to Large region

v

Momentum equation
of Large region

v

Insert the interpolated M and

erom Large to small regi(y

ni =(ny +ny*tns+ === +n,)n



Exercise



Tsunami simulation

Original Fortran code:

TUNAMI (Tohoku University’s Numerical Analysis Model for Investigation)

Governing equations:

Linear / Nonlinear long-wave / Dispersive wave model

Coordinate systems:

Spherical (lat, long) / Cartesian (meter) coordinate system

Required data:
Bathymetry data (Digital elevation model)

— GEBCO

]

125

250

375

500

625

750

3
[ | [ | |

0 125 =250 375 500 625 750

» 10000



Numerical condition

B Temporal grid size: CFL condition

Spatial grid
Velocity of 5 AX
numerical information At
. AX ,
Velocity of \/_h V2 AX
tsunami wave J
AX

AX 2
2—>.gh —— At < AX [—
\FAt> : \/gh

In nonlinear case, temporal grid size should be much smaller than cfl-
condition




How to estimate required spatial
grid size

Numerical domain
A:wave length
AX< A/a (a = 20) One-twentieth of wave length
*

| A = 4/ h_. T/ : | : ;
J= JahT ‘ X max Ny X a /\

Ax is grid size, h is water depth, T is wave period | N2
Here, we estimate wave period T from the condition at PA—
tsunami source (fault) z
T =14 /4/0h 2 W X cosd
T h. — (aAXmax) hO >
‘ min 2
Ay =2%C0S S xW ZO

A, is wave length at tsunami source, h, is water depth at
tsunami source, 0 is dip of fault, W is fault width




Numerical condition

Numerical domain

~ (aAx)®h,

hmin - ﬁg

Step 1 Set Ax in region 1

Step 2 Calculate h,,;, in region 1

Step 3 Determine area of region 2

M Nesting Grid Region 1
N\
Ground Region 2
2min
gion 3
/ / / h\Xl'min

B Example (W=50 km, 5=10deg, h0=5 km)

Region | Ax Nin
1| 1850 2823
2| 617 314
3| 206 35
4 69 4

}

Nonlinear region (< h=50m)

It is better to extend more wide area




Tsunami source model

Manshinha & Smylie (1974)

®
Ground %
' /' North
Deptr'; (m)
v Strike angle (°)

S:W
Fault width ( Aangle@) Dip angts (°)

Fault Length (m)

=z




Exercise



Software Iinstallation

1.GMT (The general mapping tools, http://gmt.soest.hawaii.edu/)

Editor tool for Bathymetry data (GMT basic_install.exe)

2. Ghostscript and GSView

‘Viewer for postscript format (gss63w32full-gpl, gsv49w32.exe)

3. Gnuplot 4.6



Bathymetry data

GEBCO (General Bathymetric Chart of the Oceans)

Web page: http://www.gebco.net/
Download: https://www.bodc.ac.uk/data/online_delivery/gebco/

Grid size: 1 minute (2003 released and 2008 updated)
30 second (2009 released)

Format : NetCDF (Binary data)

o Software : Grid display software (provided by GEBCO)
GMT (http://gmt.soest.hawaii.edu/)

s, 60l

GEBCO TCERCOE @
A -
ral Bathymetric Chart of the Oce: T (B

Chrreie ‘“—Q__ﬁ_ﬂy—{"


http://www.gebco.net/

Exercise 1 (GMT)

Clip the bathymetry data around Indian Ocean

Requirement : Make two different grid size data => 4 min
Data size should be Less than 400X 400 Grid

2004 Indian

el L b + ; ?‘tr;‘t s 3
Eooet et :
F 2

S5e

(C) Google earth



Example (Indonesia)

4 min (75/100/-10/20) 4 min (your target area)

Chile

Myanmar

Papua New
Guinea

Philippines
Etc..

-10000 -5000 0 5000 10000



Example 1 (.. ¥TUNAMI MODEL ¥examplel(GAUSS)) [ e sxe > &
E N a2l
DEX O -Q
LD REE RTW ARCANE UMD ALTH) @1 i ”
: . diifrev.dep =
OF- © @ Lvx oy [ §DEPrE;?E,IL§
D) o 6292 KB
= = d0Zrewv.de =
"’J Cnitrl "’J Input EDDEEPK%? s
’J Output Tm d03rev.de
| DEP Zw- )L
265 KE
)
< | »
—_ —_—

Lo LE REE R4

O -
: PELAD) 138

chirlfil
FIL 274l
1 KB

(1) Binary data: Tunami-32bit.exe

(2) Cntrl folder: cntrl.fil , domains.cnt, faults.int, options.opt
(3) Input folder: bathymetry data (ASCIl data)
(4) Output folder:

domains.cnt
CMT 27l
24 KB

faults.int
INT 2%l
6 KB

w)w)|w, .,

optiohz.opt
OPT 2%
2 KB




Flow

Put the bathymetry data into “input folder”

— Set numerical condition in the following files

Change cntrl.fil

Change ***.cnt

Change ***.int

Change ***.opt

|

=== {0 set file name blow
=== to set numerical condition
=== {0 Sset tsunami source

=== to do simple case test etc..

y

Click TUNAMI.exe




Exercise 2

Gaussian distribution

Initial elevation: Gaussian distribution

Water Depth: constant (=5000m)

Governing equation: Linear long-wave model

X,y-grid(300,300),dx=3000.0,dt=5.0

121t

808 -
78 -
688 -

X500

3688 -
2688 -

1688 -

488 -

Tine = 8,88 {nin

3

II 1

B 1886 28686 366 466 566 G666 JOB BS68 9600

s-anis (kn}

Tine =

8.33 {(nin}

B16
a4
812 -
8.1 r
B.B6 -
B.B6 -

B.B4

7 =L ey
2w

8 188 2688 308 408 500 688 7B8 &SO8 908

w—axiz (kn}

a 188 286 300 468 568 680 700 §08 968
n—anis (kn}



Sine wave propagation in a channel

Exercise 3

Initial elevation: Sine wave
Water Depth: Channel.dat
Governing equation:

Nonlinear long-wave model

Sine wave

7

/

dx=10.0, dt=0.2, x-size=11, y-size=3000
A=5.0, Period=600.0, Duration=300.0

/

/

1000

2000 / 3000

40

00

/

/

N\

|

1000

2000 / 3000

00

[

10

-10

/

]

1000

2000 / 3000

40

00

/




Exercise 4

Tsunami propagation in real bathymetry

Tsunami source: 2004 Indian Ocean tsunami

Tine

8.88 {nin)

Tine =

16,67 {(nin}

y-axis (deg?

]

18

&e

85

a8 a5

r=axis {deg)

Fault Parameter of 2004 event

181

79

i) 85

a8 95 168

w—axis {(deg)

Maximum tsunami
height

28

15

18

y=axis {(deg)
o

78 8a 85 98 95 188
x-anis {(deg)

No Slip Length Width Depth Strike Dip Slip angle Fault origin

(m) (km) (km) (km) ) ) ) Lat (° ) Long (° )
1 11 400 150 10 358 15 90 92.5 6.5
2 11 500 150 10 329 15 90 94.8 2.5




yeaxis

Exercise 4.1

Set tide-gauge data and make tide records

Tsunami source: 2004 Indian Ocean tsunami

Tide-record at SIBOLGA (98.76667 1.75) in 2004 Indian Ocean tsunami

20

time

Wave gauge of Layer 1 L
1 1

=10

[ 85 gc

*-axis



Exercise 5

Nesting in spherical coordinate system

Tsunami source: 2004 Indian Ocean tsunami

Tine = 33,33 {nin}

Tine = 33,33 {(nin}

y-aniz {(deg)

94,8 a5 95,2 85.4 95.6 95.8 a6

w-axis (deg}

B -
L
q,
-5 .
-10 1 1 | | 95700 95730’ 96°00"
73 8a 85 98 95 188

x-axis {(deg)



Clip bathymetry

4 min (75/100/-10/20)

-10000

-5000

5000

10000

6°00'

5730

g o 30

5°00'
96°00'
e i— | T
10000  -5000 0 5000 10000



Numerical condition

Numerical domain

(aAx)? h,
25

min —

Step 1 Set Ax in region 1

Step 2 Calculate h,,;, in region 1

Step 3 Determine area of region 2

M Nesting Grid Region 1

Ground Region 2

\ \

y

/ / / i

B Example (W=50 km, 5=10deg, h0=5 km)

Region | Ax Nin
1| 1850 2823
2| 617 314
3| 206 35
4 69 4

}

Nonlinear region (< h=50m)

It is better to extend more wide area




Degree to meter

B Simple estimation

R X cos (latitude X 1r/180)

Ax: Length of arc

| Latitude at upper
__________________ Y/ boundary

R: radius(6378 km)

Deqgree (minute) to meter
Ax=As X R X cos (latitude X 1r/180)

[AX in meter]

Grid size/ LatitudeC)l 0 | 5 [ 10 | 20 |

1 min 1854 1847 1826 1743
2 min 3709 3695 3652 3485
3 min 5563 5542 5479 5228
4 min 7417 7389 7305 6971

[Water depth: h,,]
Indian Ocean tsunami (W=150km,dip=15deg, h0=1000 m )

Grid size/ LatitudeC )l 0 | 5 | 10 | 20 |

1 min =257
2 min 98 98 95 87
3 min 221 219 214 195

4 min 393 390 381 347



Exercise 6

Nesting in spherical coordinate system for
your target area

. 3 DY
Step 1 Clip your target area ooy
il };\g--—

(4min and 2 min and 1 min)

-10000 -5000 0 5000 10000

Step 2 Set control files

00000000000

Step3 Make animation and figures ;VJD/ ! ‘Lk 1

(Water propagation and Maximum elevation)
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